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Switched-Power Two-Layer Superposition Coding
in Cooperative Decode-Forward Relay Systems

Xianglan Jin, Member, IEEE, and Hyoung-Nam Kim, Member, IEEE

Abstract—In this paper, we consider a decode-forward relay
system with a source, a relay, and a destination, where two-layer
superposition codes are used at the source and the relay. An
equivalent squared minimum distance (ESMD) that determines
the error performance is derived by using an upper bound on
the pair-wise error probability. Without deriving error proba-
bilities, the error performance level for each of superimposed
symbols can be shown in a straightforward manner by the ESMD.
An optimal superposition-coded relay scheme and a suboptimal
switched-power superposition coding scheme are proposed by
improving the ESMD. Closed-form power allocation that max-
imizes the ESMD for the switched scheme is derived for 2-ary
pulse amplitude modulation (PAM). An M-ary PAM generaliza-
tion for the switched-power superposition-coded relay scheme is
also presented. Simulation results show that significant signal-to-
noise ratio gains are achieved in the optimal and switched-power
superposition coding strategies for 2-ary and 4-ary PAM over the
Rayleigh fading channel.

Index Terms—Decode-forward (DF), diversity, maximum
likelihood (ML), relay system, superposition code.

I. INTRODUCTION

R ECENTLY, cooperative communications with many
relay strategies have been studied to improve the achiev-

able rate and communication reliability. The classical three-
terminal relay channel was first introduced by van der Meulen
[1]. The cutset bound developed by Cover and El Gamal [2]
set an upper bound on the capacity. Sendonaris, Erkip, and
Aazhang presented an information theoretic model for a coop-
erative communication network and analyzed the achievable
rate region and outage probability in the code division multiple
access (CDMA) system [3], [4]. Laneman, Tse, and Wornell
[5] developed various cooperative diversity algorithms for a
source and destination pair based on relay amplifying or fully
decoding and forwarding its received signals. These methods
were referred to as amplify-forward (AF) and decode-forward
(DF) relaying, respectively. Even though the relay operation for
the AF relay is simple, the transceivers require expensive radio
frequency amplifiers [6].
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Without cyclic redundancy check (CRC) codes at the relay,
a maximum-likelihood (ML) decoder has been introduced for
a single antenna and binary phase shift keying (BPSK) for the
DF relay system [4]. A cooperative maximal ratio combining
(C-MRC) of a three-terminal relay channel was proposed by
deriving an equivalent signal-to-noise ratio (SNR) [6]. Ju and
Kim [7] derived a closed-form formula of the approximated bit
error probability (BEP) for the ML decoder in the DF relay
system using M-ary pulse amplitude modulation (PAM) and
M-ary quadrature amplitude modulation (QAM). Due to the
complexity of the decision boundary [7], the ML decoder
becomes very complicated when the modulation size or the
number of antennas increases [8]. For this reason, a near-ML
decoder for DF relay systems was proposed, and its near ML
performance was shown [8].

Superposition codes were used to show the achievability of
the lower bound on the relay channel capacity [2], [9], [10].
The superposition codes were constituted by multiple superim-
posed Gaussian signals. Several relay operation schemes with
multi-layer superposition coding were also introduced [11],
[12], where parts of Gaussian-signal layers are forwarded at
the relay depending on the channel state information (CSI) or
decoding results at the relay and destination. The error perfor-
mance was analyzed in terms of the distortion exponent due
to the difficulty in analyzing the received SNR in the point of
view of information theory [13], [14]. In digital communica-
tion systems, superposition coding has been done with digital
modulations, such as BPSK or PAM [15]–[18]. Symbol error
probability, BEP, and pair-wise error probability (PEP) have
been used to determine the error performance [19].

In this paper, we consider a superposition-coded DF relay
system where a superposition of two modulated symbols is
transmitted from the source in the first phase, and the relay
forwards a reconstructed two-layer superposition code in the
second phase. Unlike some investigations [20], [21] that use
CRC codes at the relay to check its decoding error, we assume
that CRC codes are not employed at the relay [4], [6]–[8], [22].
Thus, the relay may forward incorrect signals. As a perfor-
mance benchmark, the PEP was derived in such a system [8].
Without superposition coding, the equivalent SNR was derived
as a performance criterion [6]. However, when superposition
coding is used at the source and the relay, it is very difficult
to derive the equivalent individual SNR for each layer sym-
bol similarly to a multiplexing multiple-input multiple-output
(MIMO) system. Instead of the equivalent SNR, we define an
equivalent squared minimum distance (ESMD) by deriving an
upper bound on the PEP as in the point-to-point system [19].
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With the ESMD, the error performance level for each layer can
be compared without computing error probabilities.

Conventionally, the source and relay use the same two-layer
superposition coding construction or the same modulation as in
previous studies [6], [7]. In such conventional relay systems,
the part of the ESMD related to one symbol is always larger
than that corresponding to the other symbol. This results in a
significant performance difference for two superimposed sym-
bols. It is shown that a symbol with higher power assignment
obtains much lower symbol error rate (SER) than the other one.
One way to solve this problem is to do separate symbol-level
power allocations in superposition coding at the source and the
relay. We call it an optimal superposition-coded relay scheme.
However, the separate symbol-level power allocation requires
relatively high complexity. As an alternative, we propose a sub-
optimal scheme in which the relay uses the switched version
of the symbol-level power allocation of the source. That is the
power allocated to s R

1 (s R
2 ) at the relay is the same as that of

s2 (s1) at the source when the superimposed symbols at the
source are s1, s2 and those at the relay are s R

1 , s R
2 . We call it

a switched-power superposition-coded relay scheme.
In this paper, the optimal power allocations for above

mentioned conventional, optimal, and switched-power
superposition-coded relay schemes are handled for 2-ary PAM
by maximizing the corresponding ESMD. The switched-power
superposition-coded strategy is extended to M-ary PAM, and
a closed-form power allocation is also derived. Note that it is
not difficult to extend the superposition-coded schemes from
PAM case to QAM case since QAM signals can be viewed
as two parallel PAM signals. Numerical results show that the
switched-power superposition-coded relay scheme achieves
similar performance to the optimal superposition-coded scheme
and much better error performance than the conventional one.

The main contributions of this paper are summarized as
follows:

• The ESMD is defined as a new performance criterion in
superposition-coded DF relay systems. Without deriva-
tion of error probabilities, the error performance level
for each of superimposed symbols can be shown in a
straightforward manner by the ESMD.

• With the ESMD, an optimal superposition-coded DF
relay scheme is proposed, and its optimal power alloca-
tion is handled for 2-ary PAM.

• A suboptimal switched-power superposition-coded DF
relay scheme is proposed by maximizing the ESMD. In
addition, a closed-from power allocation that maximizes
the ESMD for the switched scheme is derived for 2-ary
PAM.

• The switched-power superposition coding scheme is gen-
eralized for M-ary PAM case. The significant SNR gain is
achieved for 2-ary and 4-ary PAMs over Rayleigh fading
channels.

The paper is organized as follows. In Section II, the sys-
tem model and its ML and near-ML decoders are introduced.
The ESMD is defined by deriving the PEP in Section III.
In Section IV, the optimal and switched-power superposition-
coded relay schemes are proposed by analyzing the ESMD for
2-ary PAM symbols. The closed-form power allocation for the

Fig. 1. The DF relay system. The solid line denotes the first phase transmission,
and the dashed line denotes the second phase transmission.

switched scheme is also derived. The switched-power superpo-
sition coding scheme is extended to the general M-ary PAM
case in Section V. In Section VI, the performance evaluation
and discussion are given. Finally, we conclude the paper in
Section VII.

II. SYSTEM DESCRIPTION

A. System Model

We consider a DF relay system with one source, one relay,
and one destination equipped with a single antenna as shown in
Fig. 1. Half duplex transmission and frequency-flat quasi-static
Rayleigh fading are assumed. It is also assumed that the relay
knows the instantaneous CSI of the source-relay (SR) link, and
the destination knows the instantaneous CSI of the SR, source-
destination (SD), and relay-destination (RD) links. Let A be a
set of message symbols from the M-ary signal constellation.

Unequal power-allocated superposition codes [15]–[18] are
used at the source and the relay. In the first phase, the
source broadcasts a two-layer superposition codeword xS(s) =√

P1s1 + √
P2s2 (s = (s1, s2) ∈ A2, E |si |2 = 1, P1 + P2 = 1)

with average power PS . The received signals at the relay and
destination are given by

yS R = √
PShS R xS(s)+ zS R

ySD = √
PShSDxS(s)+ zSD, (1)

where the channel coefficients of the SR and SD links hS R

and hSD are circularly symmetric Gaussian random variables
with zero mean and variance σ 2

S R and σ 2
SD . These distributions

are denoted by hS R ∼ CN(0, σ 2
S R) and hSD ∼ CN(0, σ 2

SD),
respectively. zS R ∼ CN(0, σ 2) and zSD ∼ CN(0, σ 2) represent
the complex Gaussian random noise terms at the relay and the
destination in the first phase.

In the second phase, the relay decodes sR = (s R
1 , s R

2 ) ∈ A2

(E |s R
i |2 = 1) from the observation yS R . It then reconstructs a

codeword xR(sR) =
√

P R
1 s R

1 +
√

P R
2 s R

2 (P R
1 + P R

2 = 1) and
forwards it to the destination with power PR . The received
signal at the destination in the second phase is given by

yR D = √
PRh R DxR(sR)+ zR D, (2)
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where h R D ∼ CN(0, σ 2
R D) is the channel coefficient of the RD

channel, and zR D ∼ CN(0, σ 2) is the random additive noise at
the destination in the second phase.

Let �S R = PS|hS R |2, �SD = PS|hSD|2, and �R D =
PR |h R D|2. Then the instantaneous SNRs in the SR, SD, and
RD links are �S R/σ

2, �SD/σ
2, and �R D/σ

2, respectively.

B. ML and Near-ML Decoder

Let PS R(z|s) be the probability that the relay decodes the
received signal to z when the source transmits the codeword
corresponding to the message vector s. Considering all the pos-
sible signal vectors s̃R ∈ A2 at the relay, the ML decoder for
DF relay system can be written as [8]

ŝ = arg max
s

p (ySD, yR D|s)

= arg max
s

[
−

∣∣ySD − √
PShSDxS(s)

∣∣2
σ 2

+ ln
∑
s̃R

exp

(
− ∣∣yR D − √

PRh R DxR(s̃R)
∣∣2 + σ 2lnPS R(s̃R |s)

σ 2

)⎤⎦
(3)

where PS R(z|s) is denoted by a summation of several Q(x) =
1√
2π

∫ ∞
x e− y2

2 dy functions. This makes the decision boundaries
confusing and the final error probability complicated. As an
alternative, the PEP between s and z,

PS R(s → z) =
{

1 z = s

Q
(√

�S R
2σ 2 |xS(s − z)|2

)
z �= s

(4)

can be used in (3). Although the PEP PS R(s → z) is not
equal to PS R(z|s), it can be a good substitution to simplify
the expression of the decoder (3) [8]. The widely-used max-
log approximation ln

∑
i exi ≈ maxi xi is also used [23], [24],

[7]. Through these two steps, the ML decoder can be simplified
to the so-called near-ML decoder [8] as

ŝ =arg min
s

[∣∣∣ySD − √
PShSDxS(s)

∣∣∣2
+min

s̃R

{∣∣∣yR D −√
PRh R DxR(s̃R)

∣∣∣2−σ 2 ln PS R(s→ s̃R)

}]
.

(5)

The near-ML decoder obtains the same diversity and similar
error performance compared to the ML decoder [8]. Due to
the high complexity, the expression of the error probability
of the DF relay system with the ML decoder is very compli-
cated. To express the error probability in a closed-form, we use
the near-ML decoder in the superposition-coded relay system
(1) and (2).

III. PAIRWISE ERROR PROBABILITY AND EQUIVALENT

SQUARED MINIMUM DISTANCE

A. Pairwise Error Probability

In the point-to-point communication systems, the error prob-
ability is determined by the maximum PEP for possible symbol

vectors s and s̃. Also, the maximum PEP is determined by the
squared minimum distance (SMD) [19] between any two trans-
mitted signal points in the constellation. The structure of the
near-ML decoder in (5) shows us the possibility of finding an
equivalent SMD (ESMD) that maximizes the PEP.

In the near-ML decoder (5), the squared distances between
received signals and the potentially transmitted signals at the
source and the relay,

∣∣ySD − √
PShSDxS(s)

∣∣2 and |yR D −√
PRh R DxR(s̃R)|2, are determined by the channel gains of SD

and RD links, |hSD| and |h R D|, and the distances of con-
stellation points at the source and the relay, |xS(s̃ − s)| and
|xR(s̃ − s̃R)|. The PEP at the relay, PS R(s → s̃R) is also deter-
mined by the channel gains of the SR link, |hS R |, and the
distances of constellation points at the source |xS(s − s̃R)| as
shown in (4). Consequently, the performance of the near-ML
decoder depends on the channel gains and the distances of
constellation points at the source and the relay.

Therefore, we will derive the ESMD by computing the max-
imum PEP in this section. We assume that the source transmits
signal xS(s), the relay transmits xR(sR), and the received signal
at the destination ySD and yR D are given in (1) and (2). Due to
the decoding error at the relay, the PEP between s and s̃ at the
destination is written as

P(s → s̃) =
∑
sR

P(s → s̃|s, sR)PS R(sR |s). (6)

Let m([ySD, yR D], s| s, sR) be the metric of deciding s and
m([ySD, yR D], s̃| s, sR) be that for deciding s̃ for the near-ML
decoder in (5) when the source and the relay transmit s and sR ,
respectively. Then the conditional PEP between s and s̃ in (6)
can be written as:

P(s → s̃| s, sR)

= P (m([ySD, yR D], s| s, sR) > m([ySD, yR D], s̃| s, sR))

(7)

where

m([ySD, yR D], s| s, sR)

=
∣∣∣ySD − √

PShSDxS(s)
∣∣∣2

+ min
s̃R

{∣∣∣yR D − √
PRh R DxR(s̃R)

∣∣∣2 − σ 2 ln PS R(s → s̃R)

}

= |zSD|2 + min
s̃R

{∣∣∣√PRh R DxR(sR − s̃R)+ zR D

∣∣∣2
−σ 2 ln PS R(s → s̃R)

}
(8)

and

m([ySD, yR D], s̃| s, sR)

=
∣∣∣ySD − √

PShSDxS(s̃)
∣∣∣2

+ min
s̃R

{∣∣∣yR D − √
PRh R DxR(s̃R)

∣∣∣2 − σ 2 ln PS R(s̃ → s̃R)

}
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=
∣∣∣√PShSDxS(s − s̃)+ zSD

∣∣∣2
+min

s̃R

{∣∣∣√PRh R DxR(sR −s̃R)+zR D

∣∣∣2−σ 2 ln PS R(s̃→ s̃R)

}
.

(9)

With high SNR, the last parts in (8) and (9) are written for z �= s
as [8]:

σ 2 ln PS R(s → z) = σ 2 ln Q

(√
�S R

2σ 2
|xS(s − z)|2

)

= −1

4
�S R |xS(s − z)|2. (10)

For z = s, σ 2 ln PS R(s → z) = 0 from the definition in (4).
Then, (10) is satisfied for both cases of z = s and z �= s.
Applying (10) to the two metrics in (8) and (9), the summand
in (6) for high SNR range can be computed as follows:

P(s → s̃| s, sR)PS R(sR |s) ≤ exp

(
− 1

4σ 2
D2(s, s̃|sR)

)
(11)

where

D2(s, s̃|sR)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�SD|xS(s−s̃)|2
+mins̃R

{
�R D|xR(s−s̃R)|2
+ 1

2�S R |xS(s̃−s̃R)|2
}

sR = s

�SD|xS(s − s̃)|2
+ 1

2�S R |xS(s − sR)|2 otherwise.

(12)

The proof of (11) is given in Appendix A. The maximum PEP
is expressed by:

max
s,s̃

P(s → s̃) = max
s,s̃

∑
sR

P(s → s̃|s, sR)PS R(sR |s)

≤ M2 max
s,s̃

max
sR

P(s → s̃|s, sR)PS R(sR |s)

≤ M2 exp

(
− 1

4σ 2
min
s,s̃,sR

D2(s, s̃|sR)

)
. (13)

B. Definition of Equivalent Squared Minimum Distance
(ESMD)

In this subsection, we define an equivalent squared min-
imum distance (ESMD) by simplifying the exponent of the
maximum PEP in (13), i.e., mins,s̃,sR D2(s, s̃|sR). We rewrite
mins,s̃,sR D2(s, s̃|sR) in the following steps.

1) For sR = s, mins,s̃ D2(s, s̃|sR) is handled in the following
three cases related to s̃R :

∗ The case of s̃R = s

min
s,s̃

D2(s, s̃|sR = s) = t1

�= min
s,s̃

[
�SD|xS(s − s̃)|2 + 1

2
�S R |xS(s − s̃)|2

]

∗ The case of s̃R = s̃

min
s,s̃

D2(s, s̃|sR = s) = t2

�= min
s,s̃

[
�SD|xS(s − s̃)|2 +�R D|xR(s − s̃)|2

]
∗ The case of s̃R �= s and s̃R �= s̃

min
s,s̃

D2(s, s̃|sR = s)

≥ min
s,s̃

[
�SD|xS(s − s̃)|2+ 1

2
�S R min

s̃R
|xS(s̃−s̃R)|2

]

≥
(
�SD + 1

2
�S R

)
min
s,s̃

|xS(s − s̃)|2 = t1

2) For sR �= s, we have

min
s,s̃,sR �=s

D2(s, s̃|sR �= s)

= min
s,s̃,sR �=s

[
�SD|xS(s − s̃)|2 + 1

2
�S R |xS(s − sR)|2

]

=
(
�SD + 1

2
�S R

)
min
s,s̃

|xS(s − s̃)|2 = t1. (14)

In summary, mins,s̃,sR D2(s, s̃|sR) = min(t1, t2). Similarly to
the point-to-point communication system [19], we define an
ESMD between s and s̃ as:

D2
min = min

s,s̃,sR
D2(s, s̃|sR)

=min
s,s̃

[
�SD|xS(s − s̃)|2

+ min

{
1

2
�S R |xS(s−s̃)|2,�R D|xR(s−s̃)|2

}]
. (15)

Lemma 1: The superposition-coded DF relay system (1) and
(2) achieves the maximum diversity of two for nonzero Pi and
P R

i , i = 1, 2.

D2
min =min

[
min

s̃i �=s1,s̃2 �=s2

{
�SD

(√
P1|s1−s̃1|−

√
P2|s2 − s̃2|

)2

+ min

(
�R D

(√
P R

1 |s1−s̃1|−
√

P R
2 |s2−s̃2|

)2

,
1

2
�S R

(√
P1|s1−s̃1|−

√
P2|s2−s̃2|

)2
)}

,

(
�SD P1+min(�RD P R

1 ,
1

2
�SR P1)

)
min
s̃1 �=s1

|s1 − s̃1|2,(
�SD P2+min(�RD P R

2 ,
1

2
�SR P2)

)
min
s̃2 �=s2

|s2 − s̃2|2
]

(16)
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Proof: See Appendix B.
Lemma 1 shows that the superposition-coded relay system

whose error performance is determined by the ESMD in (15)
achieves the maximum diversity of two. Thus, the ESMD can
be chosen as a simple and reasonable criterion for optimizing
the error performance instead of the PEP.

C. Simplification of ESMD for Two-Layer Superposition Codes

Plugging xS(s − s̃) = √
P1(s1 − s̃1)+ √

P2(s2 − s̃2) and

xR(s − s̃) =
√

P R
1 (s1 − s̃1)+

√
P R

2 (s2 − s̃2) into (15), the
respective ESMDs for the superimposed symbols s1 and s2 can
also be achieved.

• When s̃1 �= s1, s̃2 �= s2:
Each of (

√
P1(s1 − s̃1)+ √

P2(s2 − s̃2))
2 and(√

P R
1 (s1 − s̃1)+

√
P R

2 (s2 − s̃2)

)2

in the case of

sign(s1 − s̃1) = −sign(s2 − s̃2) is smaller than that in the
case of sign(s1 − s̃1) = sign(s2 − s̃2). It turns out that

D2
min

= min
s̃1 �=s1,s̃2 �=s2

[
�SD

(√
P1|s1−s̃1|−

√
P2|s2−s̃2|

)2

+min

{
�RD

(√
P R

1 |s1−s̃1|−
√

P R
2 |s2−s̃2|

)2

,

1

2
�SR

(√
P1|s1−s̃1|−

√
P2|s2−s̃2|

)2
}]
.

• When s̃1 �= s1, s̃2 = s2:

D2
min =

(
�SD P1+min

(
�RD P R

1 ,
1

2
�SR P1

))
min
s̃1 �=s1

|s1−s̃1|2.

• When s̃1 = s1, s̃2 �= s2:

D2
min=

(
�SD P2+min

(
�RD P R

2 ,
1

2
�SR P2

))
min
s̃2 �=s2

|s2−s̃2|2.

Then, we have (16), shown at the bottom of the previous page.
The first and second terms of D2

min in (16) correspond to s̃1 �=
s1, and the first and third terms correspond to s̃2 �= s2. Thus, we
can simply say that the minimum of the first and second terms
in (16) is the ESMD between s1 and s̃1 and determines the error
probability of s1. The minimum of the first and third terms in
(16) is the ESMD between s2 and s̃2 and determines the error
probability of s2.

Based on the ESMDs, we propose new superposition-coded
transmission schemes in the following section.

IV. SUPERPOSITION-CODED RELAY SCHEMES

In this section, we consider a superposition-coded DF relay
system with 2-ary PAM, i.e., s1, s2 ∈ {−1, 1}. For the sake of
simplicity, we assume P1 > P2, i.e., P1 >

1
2 .

A. Conventional Superposition-Coded Scheme: P R
1 = P1

Conventionally, the same superposition code construction√
P1s R

1 + √
P2s R

2 is used at the relay. Plugging P R
1 = P1,

Fig. 2. Comparison of SERs of s1 and s2 for conventional superposition-coded
relay scheme over Rayleigh fading channels.

P R
2 = P2 and s1, s2 ∈ {−1, 1} into (16), we find that the third

term is always smaller than the second term. The ESMD
becomes:

D2,con
min,2PAM = 4

(
�SD + min

(
�R D,

1

2
�S R

))

· min

[(√
P1 − √

P2

)2
, P2

]
.

(17)

Since (
√

P1 − √
P2)

2 is an increasing function and P2 = 1 −
P1 is a decreasing function of P1 in P1 ∈ ( 1

2 , 1), the best power
allocation happens when

√
P1 − √

P2 = √
P2, i.e., Pcon

1 = 4
5 .

In this case, the superposition codeword with two 2-ary PAM
symbols is the same as a single 4-ary PAM symbol. The ESMD

is D2,con
min,2PAM = 4

5

(
�SD + min(�R D,

1
2�S R)

)
.

B. Optimal Superposition-Coded Scheme

Consider the ESMD in (16). As shown in Subsection IV-A,
when P R

1 = P1, the third term is always smaller than the sec-
ond term, meaning that the ESMD for s2 is smaller than that
for s1. For this reason, the SER of s2 is worse than that of s1,
as shown in Fig. 2, where PS = PR = 1 and SN R = 1/σ 2. To
achieve the SER of 10−2, the required SNR for s2 is larger than
that of s1 by approximately 3 dB on the Rayleigh fading chan-
nel in both the environments (σ 2

S R, σ
2
SD, σ

2
R D) = (1, 1, 1) and

(σ 2
S R, σ

2
SD, σ

2
R D) = (10, 1, 1).

One way to improve the error performance of s2 is to
decrease P R

1 and increase P R
2 such that P R

1 < P R
2 . As a result,

the third term is enlarged while the second term becomes
smaller, and the first term is improved via the power allocation
of P R

1 . Finally, the minimum value of the three terms (the over-
all ESMD) increases and the average SER improves. We derive
the optimal power allocation which maximizes the ESMD in



2198 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 3, MARCH 2016

(16) such as:(
Popt

1 , P R,opt
2

)
= arg max

P1, P R
2 ∈

(
1
2 ,1

) D2
min,2PAM (18)

where

D2
min,2PAM

= 4 min

[
�SD

(√
P1−

√
P2

)2

+min

{
�RD

(√
P R

1 −
√

P R
2

)2

,
1

2
�SR

(√
P1−

√
P2

)2
}
,

�SD P1 + min

(
�R D P R

1 ,
1

2
�S R P1

)
,

�SD P2 + min

(
�R D P R

2 ,
1

2
�S R P2

)]
.

It needs relatively high complexity to solve the above optimiza-
tion problem. For this reason, we propose a simple scheme in
the following subsection.

C. Switched-Power Superposition-Coded Scheme: (P R
1 = P2

and P R
2 = P1)

To avoid solving the high-complexity optimization problem
in (18), we let P R

1 = P2 and P R
2 = P1 and find the optimal P1

that maximizes the ESMD in (16), i.e.,

Pswt
1 = arg max

P1∈( 1
2 ,1)

D2,swt
min,2PAM (19)

where

D2,swt
min,2PAM

= 4 min

[(
�SD + min

(
�R D,

1

2
�S R

))
· (√P1 − √

P2)
2,(

�SD P1 + min

(
�R D P2,

1

2
�S R P1

))
,(

�SD P2 + min

(
�R D P1,

1

2
�S R P2

))]
. (20)

We call this a switched-power superposition-coded relay
scheme. With this switching, the minimum of the second and
third terms is increased, and finally, the ESMD is enlarged.

Now, we solve the optimization problem in (19) as follows:
1) When 1

2�S R ≤ �R D:
The ESMD in (20) is the same as the right-hand side
(RHS) in (17). The optimal power of P1 is Pswt

1 = 4
5 .

2) When 1
2�S R > �R D:

Let a = max(�SD,�R D) and b = min(�SD,�R D).
Then we have a P2 + bP1 ≤ �SD P1 +�R D P2 <

�SD P1 + 1
2�S R P1 and a P2 + bP1 ≤ �SD P2 +�R D P1.

The ESMD is simplified to

D2,swt
min,2PAM = 4 min( f1, f2, f3)

where f1 = (a + b)
(√

P1 − √
P2

)2
, f2 = (a P2 + bP1),

and f3 = (�SD + 1
2�S R)P2. For the functions f1, f2,

Fig. 3. An example for functions f1, f2, and f3.

and f3, it is not difficult to find the following facts in
P1 ∈ ( 1

2 , 1) as illustrated in Fig. 3:
• f1 is an increasing function of P1;
• Both f2 and f3 are decreasing functions of P1;
• f2 and f3 each have a unique cross point with f1.

With these facts, the optimal power allocation of P1 can
be solved as

Pswt
1 = arg max

P1∈( 1
2 ,1)

min( f1,min( f2, f3))

=
{

P1| f1 = min( f2, f3), P1 ∈
(

1

2
, 1

)}

= min
j=2,3

{
P1| f1 = f j , P1 ∈

(
1

2
, 1

)}
.

Let ψ(α, β, γ ) = 2γ 2−(α−β)β+2γ
√
γ 2−αβ

4γ 2+(α−β)2 . The solutions
of the equations f1 = f2 and f1 = f3 in P1 ∈
( 1

2 , 1) are P f1= f2
1 = ψ (a, b, a + b) and P f1= f3

1 =
ψ

(
a + b, a + b −�SD − 1

2�S R, a + b
)

, respectively.

Thus the optimal P1 for 1
2�S R > �R D is equal to Pswt

1 =
min

(
P f1= f2

1 , P f1= f3
1

)
.

In summary, the optimal power allocation for the switched-
power scheme is

Pswt
1 =

{
min

(
P f1= f2

1 , P f1= f3
1

)
if 1

2�S R>�R D

4
5 otherwise.

(21)

V. GENERALIZATION OF SWITCHED-POWER

SUPERPOSITION-CODED RELAY FOR M -ARY PAM

In this section, we extend the result for 2-ary PAM to M-
ary PAM. We assume that s1 and s2 use the same M-ary PAM,

i.e., s1, s2 ∈
{
±
√

3
M2−1

,±3
√

3
M2−1

, . . . ,±(M − 1)
√

3
M2−1

}
.

Then the distance between si and s̃i is in the set D =
{dmin, 2dmin, . . . , (M − 1)dmin}, where dmin = mins̃i �=si |si −
s̃i |2 = 2

√
3

M2−1
. Then, dmax = maxs̃i �=si |si − s̃i |2 = (M − 1)

dmin. To simply distinguish two symbols s1 and s2 based
on the value of the superposition code xS(s) = √

P1s1 +
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Fig. 4. Relationship between P1 and P2.

√
P2s2 as shown in Fig. 4, we assume

√
P1dmin >

√
P2dmax =√

P2(M − 1)dmin, i.e., P1 >
(M−1)2

(M−1)2+1
. We let T=( (M−1)2

(M−1)2+1
,

1). Then P1 ∈ T.
For the conventional superposition-coded relay scheme, the

optimal power allocation is Pcon
1 = M2

1+M2 , and the ESMD is

D2,con
min,MPAM = d2

min min
[
(
√

P1 − (M − 1)
√

P2)
2, P2

]
·
(
�SD + min

(
�R D,

1

2
�S R

))
(22)

= d2
min

M2+1

(
�SD + min

(
�R D,

1

2
�S R

))
.

In contrast to the situation for 2-ary PAM in Section IV, the
ESMD in (16) for the M-ary PAM case could not be simplified
in a straightforward way. Let d1 = |s1 − s̃1| and d2 = |s2 − s̃2|.
Then the first term in (16) is the minimum of the following two
terms:(

�SD + 1

2
�S R

)
min

d1,d2∈D

(√
P1d1−√

P2d2

)2

= d2
min

(
�SD + 1

2
�S R

)(√
P1 − (M − 1)

√
P2

)2
(23)

and

min
d1,d2∈D

[
�SD

(√
P1d1 − √

P2d2

)2+�RD

(√
P1d2 − √

P2d1

)2
]

= d2
min min

1≤m≤M−1

[
a
(√

P1 − m
√

P2

)2+ b
(

m
√

P1 − √
P2

)2
]

(24)

where a = max(�SD,�R D) and b = min(�SD,�R D). The
proof of (24) is given in Appendix C.

Considering all possible values of s̃1 and s̃2, the ESMD for
the switched-power superposition coding with M-ary PAM is
rewritten as

D2,swt
min,MPAM

= d2
min min

[
min

1≤m≤M−1

{
a
(√

P1 − m
√

P2

)2

+b
(

m
√

P1 − √
P2

)2
}
,(

�SD + 1

2
�S R

)(√
P1 − (M − 1)

√
P2

)2
,(

�SD P1 + min(�R D P2,
1

2
�S R P1)

)
,(

�SD P2 + min(�R D P1,
1

2
�S R P2)

)]
. (25)

It is not difficult to find that the ESMD for the switched-power
superposition-coded relay scheme in (25) is greater than or
equal to that for the conventional one in (22).

Now, we solve the following optimization problem:

Pswt
1 = arg max

P1∈T
D2,swt

min,MPAM. (26)

1) When 1
2�S R ≤ �R D:

The ESMD is the same as the RHS in (22) and Pswt
1 =

M2

1+M2 .

2) When 1
2�S R > �R D:

Similarly to the 2-ary PAM case, the ESMD is simplified
to

D2,swt
min,MPAM = d2

min min

(
min

1≤m≤M
f1,m, f2, f3

)
(27)

where f1,m = a(
√

P1 − m
√

P2)
2 + b(m

√
P1 − √

P2)
2,

m = 1, . . . ,M − 1, f1,M = (�SD P2 + 1
2�S R)(

√
P1 −

(M − 1)
√

P2)
2, f2 = a P2 + bP1, and f3 = (�SD +

1
2�S R)P2. By handling D2,swt

min,MPAM in (27), we derive the

optimal power allocation for 1
2�S R > �R D as

Pswt
1 = arg max

P1∈T
min

(
min

1≤m≤M
f1,m, f2, f3

)

= min

[
max

1≤m≤M
P

f1,m= f2
1 , max

1≤m≤M
P

f1,m= f3
1

]
(28)

where P
f1,m=f j

1 =
{

P1,m, j
1 if P1,m, j

1 ∈ T

∅ otherwise
for

j = 2, 3, P1,m,2
1 = ψ(a + (m − 1) b, (m −

1) a + b,m(a + b)), P1,m,3
1 = ψ(a + mb,ma +

b − (�SD + 1
2�S R),m(a + b)) for m =

1, . . . ,M − 1, P
f1,M = f2

1 = ψ((�SD + 1
2�S R)−

b, (M − 1)2(�SD + 1
2�S R)− a, (M−1)(�SD

+ 1
2�S R)), and P

f1,M = f3
1 = M2

1+M2 .

The proof of Equation (28) is given in Appendix D.
Summarizing the results for 1

2�S R ≤ �R D and 1
2�S R >

�R D , the optimal P1 is represented by

Pswt
1 =

⎧⎨
⎩

min
j∈{2,3} max

1≤m≤M
P

f1,m= f j
1 , if 1

2�S R > �R D

M2

1+M2 otherwise.
(29)

VI. PERFORMANCE EVALUATION AND DISCUSSION

In the previous sections, the optimal superposition-coded
relay scheme and switched-power superposition-coded relay
scheme are proposed. It is also shown that both have larger
ESMD than the conventional scheme. Moreover, a closed-form
for the optimal power, Pswt

1 , was derived for the switched
scheme.

In this section, we simulate the relay systems on Rayleigh
fading channel with σ 2

SD = σ 2
R D = 1 and various values of

σ 2
S R . “Conventional” means the conventional superposition-

coded relay scheme in Subsection IV-A, and “Optimal” denotes
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Fig. 5. Comparison of ESMD for the conventional, optimal, and switched-
power superposition-coded relay schemes with σ 2

SD = σ 2
RD = 1 and

various σ 2
S R .

the optimal superposition-coded relay scheme as discussed
in Subsection IV-B. “Switched” means the switched-power
superposition-coded relay scheme proposed in Subsection IV-
C. We evaluate and discuss the ESMD and the error perfor-
mance of the systems when PS = PR = 1.

First, we compare the average ESMD for various values of
σ 2

S R . Fig. 5 shows that the ESMD of the switched scheme is
quite close to that of the optimal scheme and larger than that of
the conventional scheme. With the increase of σ 2

S R , the ESMD
of the switched scheme sees a big improvement, which matches
the practical relay system where the transmission is assisted by
a relay with a strong SR link.

A comparison of SERs is also shown. Figs 6 and 7 show
that the average SER of s1 and s2 in the switched-power
superposition-coded relay scheme is very similar to that in the
optimal scheme and better than that in the conventional scheme.
Without channel coding, we compare the SNR improvements
for the SER of 10−2. We assume SN R = 1/σ 2.

Compared with the conventional superposition-coded relay
scheme, the switched-power scheme has a 1.2 dB SNR gain

Fig. 6. Comparison of SERs for the conventional, optimal, and switched-power
superposition-coded relay schemes with (σ 2

S R , σ
2
SD, σ

2
RD) = (10, 1, 1).

for 2-ary PAM (solid line in Fig. 6(a)) and a 3.6 dB SNR
gain for 4-ary PAM (dashed line in Fig. 6(a)) on the channel
conditions (σ 2

S R, σ
2
SD, σ

2
R D) = (10, 1, 1). Even for a fair chan-

nel, i.e., (σ 2
S R, σ

2
SD, σ

2
R D) = (1, 1, 1), the SNR improvement of

the proposed switched-power scheme is 0.4 dB (solid line in
Fig. 7(a)) and 1 dB (dashed line in Fig. 7(a)) for 2-ary and 4-ary
PAM symbols, respectively.

As shown in Figs 6(b) and 7(b), the SER of s2 is worse
than that of s1 at over 3 dB and 4.3 dB for 2-ary PAM and
4-ary PAM, respectively, for both cases of (σ 2

S R, σ
2
SD, σ

2
R D) =

(10, 1, 1) and (σ 2
S R, σ

2
SD, σ

2
R D) = (1, 1, 1) in the conventional

superposition coding scheme. The reason is the small ESMD
for s2 as analyzed in Subsection IV-B. By applying the switched
scheme, the SNR for s2 is improved by 2 dB and 4.3 dB
for 2-ary and 4-ary PAM with (σ 2

S R, σ
2
SD, σ

2
R D) = (10, 1, 1),

respectively. With (σ 2
S R, σ

2
SD, σ

2
R D) = (1, 1, 1), the SNR gains

for s2 are 0.7 dB and 1.2 dB for 2-ary and 4-ary PAM, respec-
tively. On the other hand, the SER for s1 has a 0.2 dB loss and
a 2 dB gain for 2-ary and 4-ary PAM on (σ 2

S R, σ
2
SD, σ

2
R D) =

(10, 1, 1) and a 0.5 dB loss and a 0.6 dB gain for 2-ary and
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Fig. 7. Comparison of SERs for the conventional, optimal, and switched-power
superposition-coded relay schemes with (σ 2

S R , σ
2
SD, σ

2
RD) = (1, 1, 1).

TABLE I
SNR IMPROVEMENT FOR THE SWITCHED-POWER SUPERPOSITION

CODING SCHEME COMPARED WITH THE CONVENTIONAL

SUPERPOSITION CODING SCHEME FOR 2-ARY AND 4-ARY

PAMS AT SE R = 10−2

4-ary PAM for (σ 2
S R, σ

2
SD, σ

2
R D) = (1, 1, 1), respectively. The

average SERs in Figs 6(a) and 7(a) are obtained from the con-
tributions of s1 and s2 mentioned above. The results are shown
in Table I. These results show the effectiveness of the switched
scheme.

VII. CONCLUSION

In this paper, we defined the ESMD as a new criterion of
error performance in superposition-coded DF relay systems.
Without derivation of the error probability, the level of the

error performance can be shown in a straightforward man-
ner by the ESMD. Unlike the equivalent SNR, the ESMDs
for the individual superimposed symbols can also be derived.
The optimal and switched-power superposition-coded DF relay
schemes were proposed by analyzing the ESMD. In addition,
the closed-form power allocation that maximizes the ESMD
for the switched scheme was derived for 2-ary PAM and M-ary
PAM. Significant SNR gains were achieved in the simulation
for 2-ary and 4-ary PAM over Rayleigh fading channels.

The switched scheme can also be used in other scenar-
ios. For example, if the SD link is blocked, two relays
can assist the transmission, with one relay transmitting the
same superposition codeword

√
P1s R1

1 + √
P2s R1

2 , and the
other transmitting the switched-power superposition code-
word

√
P1s R2

2 + √
P2s R2

1 . Furthermore, the switched-power
superposition-coded DF relay scheme could also be extended to
the multi-layer case, such as

√
P1s1 + √

P2s2 + · · · + √
PLsL

is transmitted from the source,
√

P1s R1
2 + · · · + √

PL−1s R1
L +√

PLs R1
1 is transmitted from the first relay R1,

√
P1s R2

3 +
· · · + √

PL−2s R2
L + √

PL−1s R2
1 + √

PLs R2
2 is transmitted from

the second relay R2 and so on. The total ESMD will be enlarged
by changing the powers for s1, . . . , sL . The switching strategies
for multi-layer superposition-coded multi-relay systems can be
one of the next research topics.

APPENDIX A
PROOF OF (11)

We first give the following theorem [8] that helps solve this
problem.

Theorem 1 ([8, Theorem 1]): Let c1 and c2 be complex values
satisfying |c2|2 > |c1|2 and x be a complex Gaussian random
variable with distribution CN(0, σ 2). Then, for σ 2 → 0, |c2 +
x |2 ≥ |c1 + x |2 in probability, i.e.,

lim
σ 2→0

P
(
|c2 + x |2 ≥ |c1 + x |2

)
= 1.

�
Then P(s → s̃|s, sR)PS R(sR |s) for different cases of sR = s

and sR �= s in high SNR are considered.
• For sR = s:
Applying (10) to (8) and (9) and using Theorem 1 in (8)

(s̃R = s is the solution of the min function in (8) in high SNR),
we have

m([ySD, yR D], s| s, sR) = |zSD|2 + |zR D|2

and

m ([ySD, yR D] , s̃| s, sR)

=
∣∣∣√PShSDxS(s − s̃)+zSD

∣∣∣2
+min

s̃R

{∣∣∣√PRh R DxR(s−s̃R)+zR D

∣∣∣2+ 1

4
�S R |xS(s̃−s̃R)|2

}
.
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Plugging these two metrics into (7), the summand in (6) is
written as

P(s → s̃|s, sR = s)PS R(sR = s|s)

≤ P

(
|zSD|2+|zR D|2>

∣∣∣√PShSDxS(s−s̃)+zSD

∣∣∣2

+min
s̃R

{∣∣∣√PRh RDxR(s−s̃R)+zRD

∣∣∣2+ 1

4
�SR |xS(s̃−s̃R)|2

})

=max
s̃R

P
(
2Re

(√
PShSDxS(s−s̃)z∗

SD +√
PRh RDxR(s−s̃R)z

∗
RD

)

< −
(
�SD|xS(s − s̃)|2 +�R D|xR(s − s̃R)|2

+1

4
�S R |xS(s̃ − s̃R)|2

))
(30)

where Re(·) and (·)∗ denote the real part and the com-
plex conjugate of a complex number, respectively, and
2Re

(√
PShSDxS(s−s̃)z∗

SD +√
PRh RDxR(s−s̃R)z∗

RD

)
is a real

Gaussian random variable with mean zero and variance
2σ 2

(
�SD|xS(s−s̃)|2+�RD|xR(s − s̃R)|2

)
. Then we have (31),

shown at the bottom of the page.
• For sR �= s:

P(s → s̃|s, sR = s)PS R(sR = s|s)

≤ max
s̃R

Q

⎛
⎜⎜⎝
√√√√√

(
�SD|xS(s − s̃)|2 +�R D|xR(s − s̃R)|2 + 1

4�S R |xS(s̃ − s̃R)|2
)2

2σ 2
(
�SD|xS(s − s̃)|2 +�R D|xR(s − s̃R)|2

)
⎞
⎟⎟⎠

≤ exp

(
− 1

4σ 2
min

s̃R

(
�SD|xS(s − s̃)|2 +�R D|xR(s − s̃R)|2 + 1

2
�S R |xS(s̃ − s̃R)|2

))
(31)

P(s → s̃|s, sR �= s)PS R(sR �= s|s)
≤ P

(
|zSD|2+|zR D|2+ 1

4
�S R |xS(s−sR)|2>

∣∣∣√PShSDxS(s−s̃)+zSD

∣∣∣2+|zR D|2
)

PS R(s → sR)

= P

(
2Re

(√
PShSDxS(s − s̃)z∗

SD

)
<−�SD|xS(s−s̃)|2+ 1

4
�S R |xS(s−sR)|2

)
PS R(s → sR)

(a)≤ Q

⎛
⎝
√
�SD|xS(s − s̃)|2− 1

2�S R |xS(s − sR)|2
2σ 2

⎞
⎠ Q

⎛
⎝
√
�S R |xS(s − sR)|2

2σ 2

⎞
⎠

≤ exp

(
− 1

4σ 2

(
�SD|xS(s − s̃)|2 + 1

2
�S R |xS(s − sR)|2

))
(32)

max
s,s̃

E {P(s → s̃)}

≤ M2 E

{
exp

(
− 1

4σ 2
D2

min

)}

≤ M2 max
s,s̃

E

{
exp

(
− 1

4σ 2
�SD|xS(s − s̃)|2

)}
E

{
exp

(
− 1

8σ 2
�S R |xS(s − s̃)|2

)
+ exp

(
− 1

4σ 2
�R D|xR(s − s̃)|2

)}

(b)= M2 max
s,s̃

1
PSσ

2
SD

4σ 2 |xS(s − s̃)|2 + 1
·
⎡
⎣ 1

PSσ
2
S R

8σ 2 |xS(s − s̃)|2 + 1
+ 1

PRσ
2
R D

4σ 2 |xR(s − s̃)|2 + 1

⎤
⎦ (33)

Applying (10) and setting s̃R = sR in (8) gives the upper
bound as

m([ySD, yR D], s| s, sR)≤|zSD|2+|zR D|2+ 1

4
�S R |xS(s−sR)|2.

From Theorem 1, the lower bound on the metric in (9) in high
SNR is:

m([ySD, yR D], s̃| s, sR)≥
∣∣∣√PShSDxS(s−s̃)+zSD

∣∣∣2+|zR D|2.

Using these bounds gives (32), shown at the bottom of the page,
where (a) is from the fact that 2Re

(√
PShSDxS(s − s̃)z∗

SD

)
is

a real Gaussian random variable with mean zero and variance
2σ 2�SD|xS(s − s̃)|2. This completes the proof of (11). �

APPENDIX B
PROOF OF LEMMA 1

From the result of maximum PEP in (13) and the ESMD in
(15), we have (33), shown at the bottom of the page, where (b)
is due to the independent exponential random variables �SD ,
�S R , and �R D with respective rate parameters 1/(PSσ

2
SD),

1/(PSσS R)
2, and
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1/(PRσ
2
R D). Plugging xS(s − s̃) = √

P1(s1 − s̃1)+ √
P2(s2 −

s̃2) and xR(s − s̃) =
√

P R
1 (s1 − s̃1)+

√
P R

2 (s2 − s̃2) to (33),

the maximum PEP is proportional to σ 4 for nonzero Pi and
P R

i , i = 1, 2 in high SNR, and then this system achieves
a diversity of two. This result can also be obtained from
Theorem 2 in the previous study [8]. �

APPENDIX C
PROOF OF (24)

Consider the left-hand side (LHS) in (24). For �SD ≥
�R D , d1 and d2 that minimize �SD(

√
P1d1 − √

P2d2)
2 +

�R D(
√

P1d2 − √
P2d1)

2 should satisfy (
√

P1d1 − √
P2d2)

2 <

(
√

P1d2 − √
P2d1)

2, i.e., d1 ≤ d2 due to
√

P1 > (M − 1)
√

P2
and dmin ≤ d1, d2 ≤ (M − 1)dmin. For �SD < �R D , d1 ≥
d2 should be satisfied. Let m1 = min(d1, d2)/dmin, and
m2 = max(d1, d2)/dmin. Since a = max(�SD,�R D), b =
min(�SD,�R D), we have:

min
d1,d2∈D

[
�SD

(√
P1d1−√

P2d2

)2+�RD

(√
P1d2−√

P2d1

)2
]

= min
d1,d2∈D

[
a
(√

P1 min(d1, d2)−
√

P2 max(d1, d2)
)2

+b
(√

P1 max(d1, d2)−
√

P2 min(d1, d2)
)2

]

= d2
min min

1≤m1≤m2≤(M−1)

{
a
(

m1

√
P1 − m2

√
P2

)2

+b
(

m2

√
P1 − m1

√
P2

)2
}

(c)= d2
min min

1≤m≤M−1

{
a
(√

P1−m
√

P2

)2+b
(

m
√

P1−√
P2

)2
}

where (c) is due to the fact that m1
√

P1 − m2
√

P2 ≥ √
P1 −

m2
√

P2 and m2
√

P1 − m1
√

P2 ≥ √
P1 − m1

√
P2. �

APPENDIX D
PROOF OF (28)

For functions f1,m,m = 1, . . . ,M and f j , j = 2, 3 in P1 ∈
T, the following facts hold:

1) f1,m,m = 1, . . . ,M are increasing functions of P1 and

a′ + b′ < f1,m < a + mb, (1 ≤ m ≤ M − 1)

0 < f1,M < �SD + 1

2
�S R

where a′ = a(M−1−m)2

(M−1)2+1
and b′ = b(m(M−1)−1)2

(M−1)2+1
.

2) f2 and f3 are decreasing functions of P1 and

a + b(M − 1)2

(M − 1)2 + 1
> f2 > b

�SD + 1
2�S R

(M − 1)2 + 1
> f3 > 0

3) f2 and f3 each have a cross point with f1,M

4) f2 and f3 are each smaller than f1,m (and do not cross
with f1,m) or have a cross point with f1,m for m =
1, . . . ,M − 1

5) f2 and f3 each have a cross point with min1≤m≤M f1,m
6) min1≤m≤M f1,m and min( f2, f3) have a cross point.
Using these facts, the optimal power allocation of P1 can be

derived with the following steps:
• From facts 1), 2), and 6), the optimal P1 that maximizes

the ESMD in (27) is the solution of min1≤m≤M f1,m =
min( f2, f3)

• From facts 1), 2), and 5), the solution of min1≤m≤M

f1,m = min( f2, f3) is the minimum value of the solutions
of min1≤m≤M f1,m = f2 and min1≤m≤M f1,m = f3

• From facts 1), 2), and 3), the solution of min1≤m≤M

f1,m = f j is the maximum value of the solutions of
f1,m = f j , 1 ≤ m ≤ M in P1 ∈ T for j = 2, 3

With these steps, the optimal power allocation is

Pswt
1 = arg max

P1∈T
min

(
min

1≤m≤M
f1,m,min( f2, f3)

)

=
{

P1| min
1≤m≤M

f1,m = min( f2, f3), P1 ∈ T

}

= min
j=2,3

[{
P1 | min

1≤m≤M
f1,m = f j , P1 ∈ T

}]

= min
j=2,3

[
max

1≤m≤M

{
P1 | f1,m = f j , P1 ∈ T

}]
.

By computation, the solution of the equation f1,m = f j in

T is derived as P
f1,m= f j

1 =
{

P1,m, j
1 if P1,m, j

1 ∈ T

∅ otherwise
, for

j = 2, 3 where P1,m,2
1 = ψ(a + (m − 1)b, (m − 1)a + b,

m(a + b)) and P1,m,3
1 = ψ(a + mb,ma + b − (�SD +

1
2�S R),m(a + b)),m = 1, . . . ,M − 1. The respective solu-

tions of f1,M = f2 and f1,M = f3 are P
f1,M = f2

1 = ψ((�SD +
1
2�S R)− b, (M − 1)2 (�SD + 1

2�S R)− a, (M − 1) (�SD +
1
2�S R)) and P

f1,M = f3
1 = M2

1+M2 . This completes the proof of
Equation (28). �
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